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A Moment Method with Mixed Basis Functions for
Scatterings by Waveguide Junctions

Y. LEONARD CHOW anp SIEN-CHONG WU

Abstract—A moment method with mixed basis functions is intro-
duced. In this formulation, modal basis functions are used for the
expansion of the currents corresponding to the scattered propagating
modes, while pulse basis functions are used for the expnsion of the
current corresponding to the scattered envancescent waves. This,
together with the Dirac § weighting functions, reduces the number
of total basis functions needed while retaining the simplicity and
versatility of the method to cover junctions of an arbitrary shape.
This method is applied to study examples of homogeneous and
inhomogeneous waveguide junctions of parallel-plate waveguide
propagating TE waves. It is found that for junctions that are not
electrically large the convergence of the solutions is good.

An appendix is included to transform and quicken the numerical
integration of the modal basis functions.

I. INTRODUCTION

OMENT METHODS have been used to study scat-
M tering problems for different types of scattering
boundaries with accurate results, However, the

basis functions used in each method have been limited to a
single type. For instance, the unit-pulse basis functions have
been used in the scattering by cylindrical obstacles in open
space [1], [2]; the modal basis functions have been used in
the scattering by two-dimensional (i.e., parallel-plate) wave-
guide diaphragms [3]-[5]. The former basis functions had to
be used due to the “not-so-regular” shape of the cylindrical
obstacle; the latter had to be used due to the infinite wave-

Manuscript received August 7, 1972; revised January 8, 1973. This
work was supported by the National Research Council of Canada under
Operating Grant A3804.

The authors are with the Department of Electrical Engineering,
University of Waterloo, Waterloo, Ont., Canada.

guide walls. From the above examples, it becomes evident that
a mixed type of basis functions, consisting of both the unit
pulses and the modes, would well be used for a cylindrical ob-
stacle (along the third dimension) in a parallel-plate waveguide.

A first attempt in this direction for a single propagating
TE1o mode was carried out by Wu and Chow [6]. In the pres-
ent paper, the purpose is to extend and formulate TE modes
of the parallel-plate waveguide in general, using the mixed
basis functions, and along the same line as the standard for-
mulation given by Harrington [1]. After the terms in the
waveguide integral equation are identified with the basis func-
tions, the scattering by a cylindrical obstacle (in waveguides,
regular sized and oversized, with several propagating modes)
is studied. The method is then applied to the scattering by a
inhomogeneous waveguide junction with two different dielec-
trics. For convenience in both studies, the point-matched
weighting functions are used.

Only a small number of basis functions are needed for the
moment method using the mixed basis functions. The reason
is the following. One type of the basis functions is used to
represent the propagating modes along the infinite waveguide
walls; there are only a few of these propagating modes. The
other type (say, the narrow unit-pulse functions) is used to
represent the evanescent waves; the evanescent waves are
highly localized at the obstacle.

The numerical integration of the basis functions of the
propagating mode is simplified and quickened by a field trans-
formation. The derivation of the transformation is presented
in the Appendix.
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II. GeENERAL FORMULATION WITH MIXED
Basis FuncTioNs

The methods of moment may be used to solve the following
inhomogeneous equation

L(f) = ¢ )

where I is a linear operator, g is a known function, and f is to
be determined. Instead of expanding f into a standard series
of a single type of basis functions, as given by Harrington [1],
we shall expand f into a series of the mixed type, say of two
types, of basis functions, f, and 4,. That is,

No N
f = Z Onfn + Z Bnhn (2)
n=1 n=1

where a, and B, are the coefficients. The above expansion is
allowed as long as f, and %, are linearly independent in the
domain of L. These basis functions, similar to those in a stan-
dard series, need not be orthogonal nor complete [3]. Substi-
tuting (2) into (1) and using the linearity of L, we have

Ny N1
2 anl(fa) + 20 BuLl(hn) = g 3)

It is evident that the suitable inner product (f, g) need not
be changed by the mixed type of basis functions. Now the
weighting functions can be defined either as a mixed- or a
single-type series. For convenience in this paper, we may
define them as a single type wy, in the range of L. Thus, taking
the inner product of (3) with each w,,, we get

No Ny
<wm, g = Z (W, zf”) + Z BlwWm, Lhn) 4)
n=1 n=1
withm=1,2,3,--:, No+ Ny

" This set of equations can again be written in the standard
matrix form as given by Harrington [1]:

(g} = ] D;‘”ﬂ )

where {a,}, {8:}, and {g.} are again, respectively, the un-

known and known column matrices. Each square matrix ele- -

ment /y, is given by the inner product of either (wm, Lf,) or
(&m, Lh,). Since the basis-function types, f, and k,, are mixed,
the matrix-element type is also mixed. In spite of this the
square matrix in (5) can obviously still be inverted by a stan-
dard method to get the unknown a, and 3,.

III. TEE INTEGRAL EQUATION FOR TE MoODES
IN A PARALLEL-PLATE WAVEGUIDE
Inasource-free two-dimensional space r(x, z), the transverse
electric field E, is given by the line integrals of all the electric-
and the equivalent magnetic-current densities, J and M, along
the closed boundary of the space. That is [7],

’
JE,(r) = — jwu?f JEGGr| vy dv

— V, Xf M(r’)G(r[ ) dr’ (6)
where

1 _
G(r|r) = P HO(WVek|r—1]), k= wlue (6a)
J
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Fig. 1. (a) The homogeneous waveguide junction. (b) The inhomoge-
neous waveguide junction. (c) The inhomogeneous junction separated
into two homogeneous dielectric spaces, with the incident, scattered,
and evanescent components of the electric and magnetic currents, as
well as the field points, marked on their boundaries. Dotted lines indi-
cate field-point locations.

i.e., the Green’'s function is the zeroth-order Hankel function
of the second kind. The space is assumed to be homogeneously
filled with a medium of dielectric constant €. The two-
dimensional curl (V;X) in the second term operates on the field
point 7, while the line integrals in both terms operate on the
source point 1. The electric- and magnetic-current densities
on the waveguide walls are related to the magnetic and elec-
tric fields there by the vector relations

J=nXH
M=EXi# (7

where # is the unit vector normal to the line boundary. As we
have assumed E to lie on the y direction and H to lie on the
x-g plane, it is clear that J has only the y component, and the
components of M lie on the ¥~z plane.

IV. HOMOGENEOUS JUNCTION

The identification of the moment-method matrix with the
integral equation given in (6) is rather involved since the
equation has two integral operators. For clarity, therefore, in
the first identification we shall eliminate the integral operator
involving the magnetic current M. This is done by considering
the homogeneous junctions with only conductive obstacles. In
this way, as shown in Fig. 1(a), the line integral for homo-
geneous space can be made to integrate along the boundaries
of the conducting obstacles and the infinite waveguide walls.
On these boundaries E, and, therefore, M are zero.

With the second integral operator eliminated, (6) can be
arranged to have a form similar to (1) with the known and
unknown parameters on the opposite sides of the equal sign.
To do this, we shall first decompose the electric current J, in
(6) into a sum of the incident modal current j,%, the total scat-
tered propagating current J° and the total scattered evanes-
cent current J¢, i.e.,

Ty = jai T+ Je. (8)

Without loss of generality, the incident modal current j,° is
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assumed to be that of a single TE, mode! with unit amplitude.
The subscript ¥ has been dropped in the right-hand side since
all currents are assumed to flow in the y direction. For con-
venience, all currents on the obstacle, propagating and eva-
nescent, are lumped together as an evanescent current. With
(8) substituted into (6), and with the E, and M set to zero on
the conducting boundary, we get the rearranged form of (6) as

]'wluof jaiG(T[ r') dr’
— —jem® (°+IVG@| ). (9)

The above equation can be identified with (1) since j,*, and
therefore its electric-field integral at the left-hand side, is a
completely known function; the unknown function at the
right-hand side is not the corresponding field integral but the
scattered current (J¢-+J%) acted on by the integral operator
with the kernel G.

Now we expand the total scattered current into two basis
function types. First, the propagating current is written as a
basis function sum of the 2N, propagating modes with unit
amplitude, i.e.,

No
Js = Z {Rn]nTO’/) + T, ‘nt(r,)]

n=1

(10)

where R, and T, are the reflection and transmission coeffi-
cients of the TE,o propagating modes. It is noted that all the
reflected modal currents 7,", as well as the incident 7,f, are
semi-infinite in extent, that is they have value only on the
walls to the incident side of the waveguide junction. A similar
condition, but to the opposite side, is true for all the trans-
mitted modal current j,% Next the localized evanescent cur-
rent is written as a basis-function sum of Ny unit pulses:

Ny
Je = anln(r') (11)
n==1

where ¢, is the electric-current density at the evanescent
source point ¥, and %, is a pulse function of unit amplitude
and a fixed width A7, Although the basis functions j,7, 7.%, and
%, are not orthogonal to each other, they are obviously linearly
independent as required by the moment method.

With the width Ar" being small, (10) and (11) can be sub-
stituted into (9) to reduce the latter into the following sum:

Ng

—eit) = 3 [Ruew’ (1) + Tueat(n)]

n=1

N
—jope 0 anG(Tl r.)Ar

(12)
n=1
where the semi-infinite line integral
7
r(r) = — jowo [ 32 (IGE| 7Y
p=4drort (12a)

1 The second index of the mode is always zero, sinc.e there is no field
variation in the ¥ direction for a parallel-plate waveguide defined on the
%x-z plane as in Fig. 1(a).
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is the partial electric field due to the known semi-infinite wall
current of the TE,o propagating mode. The numerical evalua-
tion of e,? can be performed either through a transformation
given by Wu and Chow [6], or more conveniently through
another transformation given in the Appendix.

Having the same form as (3), (12) can now be solved by
forming the standard matrix of the moment method. The
weighting functions are chosen to be a series of Dirac é-func-
tions, i.e.,

wm=5(r—rm), ’m=1,2,*“,2No+N1 (13)

where the field points r,, are matched such that Ny of them are
the evanescent source points of the basis functions while the
other 2N, points, matching to the propagating modes, are
arbitrarily selected points on the waveguide walls beyond the
evanescent region. Taking the inner product of (12) with each
Wmin (13) we get the sum
No
— i (tm) = 2 [Rua™(tm) + Trent(rm)]

ne==l

Ni
—jwuo 2 oan(rml r.)Ar.  (14)

n=1

Equation (14) is identified with (4). Hence a standard matrix
of the type in (5) can be formed.

Before the matrix can be inverted it is noted that in the
second sum, the function G, as given in (6a), diverges when
the field point 7, coincides with the source point r,’. For these
points, we have to replace G by a more suitable approxima-
tion:

Gl ) = =152 (w 2 4 - 1)]
Ywm| Ta -——j4 ]7r‘ n 4 Y — )

tw =1, (14a)

where v=0.577215, as given by Harrington [1].
With the matrix inverted, the unknown coefficients R,, T,
and a, of the currents are obtained.

V. INHOMOGENEOQOUS JUNCTION

For an inhomogeneously filled waveguide junction, as
shown in Fig. 1(b), the homogeneous space equation (6) can-
not be applied directly. It is necessary, hence, to consider the
junction as two separated but homogeneous and closed dielec-
tric spaces. These two spaces have a dielectric interface; there-
fore, the magnetic-current term in (6) has to be included to
account for the contribution from the equivalent magnetic
current (M= E X ) across the interface.

The magnetic-current term in (6) is not in a form suitable
for numerical analysis. To improve this we shall first move the
field-point differential operator A, X through the source-point
integral operator into the integrand. Then tbe integrand is
transformed into two terms, which are

VX [M@)Ga| )] = G| ¥)V.X M)
— M@)XVGr| ) (15)

from a standard vector relation. The first term in the above
vanishes since the field-point operator A; X does not operate on
the source points in M; and the second term above, involving
the gradient Vy, can be easily differentiated since its operand,
the Green’s function, is simply a zeroth-order Hankel func-
tion. With the integrand of the second term in (6) thus re-
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duced, it can be substituted back into (6) to get the more
convenient form:

E(r) = — jwmf JG(r| vy ar
+ y.f Me X G'(r| ") dr' (16)

where the vector

G'(r|r) = VG(r| 1)
_ —\./érk (r—1") H1(2)(\/E—rklr—r’|) (16a)
4 |r=r

with ¢, being the dielectric constant of a separated space of the
inhomogeneous junction.

The boundary condition requires that the tangential
E- and H-fields are continuous across the interface between
the two separated spaces. Nevertheless, their equivalent elec-
tric and magnetic currents as given in (7) have opposite signs
in the two separated spaces since the unit vector # changes
sign across the interface.

With these in mind, we may now decompose the currents
J and M of (6) into the following superscripted current-
density components. Along the waveguide walls at the inci-
dent side of the dielectric interface:

15,4 modal current of incident TEg mode of unit
amplitude;

LJs  current of all scattered propagating modes;

Lje  current of all evanescent modes. an

Along the waveguide walls at the transmission side there is no
incident current, while there are both the scattered propagat-
ing and evanescent currents 3J¢ and 3J%. In between these two
spaces, along the interface itself, and with the upper sign
referring to the incident side, we define

__t 2Je
+2)fe (172)

For easy identification in the following integrals and matrix,
the superscripted currents and the corresponding sections are
drawn in Fig. 1(c). Outside their defined sections, the currents
are assumed to be zero.

With the relevant currents substituted and in the space at
the incident side, (6) can be written in a form similar to (9),
but with line integrals only along the boundaries with the
specific currents,

lotal scattered electric current;

fotal scattered magnetic current.

Jouo f Y.AG(r| 1) dr'
1
’ ’
= __jwMoI: f (1_]s + lje) +f 2Je:| IG(T[ T’) ar'
1 2

+ y-f 2Me X G/ (r| ) dr' — M<(r) (18)

where, similar to the subscripted integrals, the Green’s func-
tions are superscripted to indicate the dielectric space they
belong to. It is noted that the E,-field along the interface is
replaced by its equivalent magnetic current 23/¢. Similarly,
in the space at the transmission side, (6), with the incident
current equal to zero is
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0= —Me(r) — y-f SMe X 3G/ (r| r') dr'

+J'wuo|: f2 e - L "+ 318)] Gr| ) dr'.  (19)

Similar to the expansion in (10) and (11), we can now
expand the currents 1J8, LJ¢, 27¢, 2]/¢, 3J¢, and 3J® into two
types of basis functions, of propagating modes, and of unit
pulses. Therefore, equivalent to (12), (18) and (19) can be
written into the two following sums: with the field and source
points defined as 1., and 7, at the incident side the sum is?

No Ny .
—ei(rn) = 2 Rulen"(tm) — Jouo 2 1o, \G(rm | 127) AF

n=1 =1

N2
— jwuo Z 2an1G(7‘mI ra') A7

n=1

N2
— > B F(1a | 1) AF

n=1

(20)
at the transmission side the sum is

Na No
0 = jwuo D, 2az,ﬁG(rml r)AY — 2ﬁn3F(rm[ 1) Av

n=1 n=1

Ng . Ny
- jwuo Z 3an3G(1’m| Tn') AT’ + Z Tnsent(rm)

n=1 n=1

(21)

where 23, is the magnetic-current density at the evanescent
source point r,’ on the interface. The Green’s function for
magnetic current is

L3E(t,, | 1)

M
=§.<m)>< 3G (Tn| 1)),  TwE T (22)

= 1/2A7, T =1 (22a)

For rn,=r,’, the first F term in (22) diverges and, as shown by
Harrington [1], the second F term in (22a) has to be used. It
is noted that the 23/°(r) terms in (18) and (19) have been ab-
sorbed in the second F term.

The field-point testing functions w,, are again a sequence
of Dirac §-functions coinciding with the centers of the unit
pulses of the evanescent waves. At each unit pulse along the
interface there are actually two source-current quantities, one
electric and one magnetic. Therefore, corresponding to each
source point, two field-point testing functions are needed, one
slightly to the right in space 1 and the other slightly to the
left in space 3. With all the evanescent field points and source
points matched, a few arbitrary field points, on the waveguide
walls at each side of the interface beyond the evanescent re-
gion, are needed to match the scattered propagating modes.
In this way, the number of equations arrived at from the field
point equals the number of unknown mode and pulse basis
functions, and the matrix for the moment method is formed.
Thus, following (20) and (21), the matrix has a size of NXN
where N= No-}N1+2N,+ N3+ N, For clarity, the matrix
is partitioned in the following submatrices:

2 The partial electric fields +3,? here are the same semi-infinite line
integrals of the modal current as those in (12a). Nevertheless, an extra
superscript is added at the upper left-hand corner to indicate the dielec-
tric space, 1 or 3 in Fig, 1(¢), in which they have nonzero values. The cot-
responding modal current, such as %, in (17) had the same superscripts.
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—{eil] [le] 61 [6] ['F] [o] o] 1
— e’} er] ['6] ['Gl ['F] [o] [o]
—{te}| [le] ['6] 6] [F] [o] o]
(o} | | o] o] [6] [F] [*6] [%]
{0} o] [o] [6] [*F] [*G] [%]
L {o} 1 L o] ol [6] [3F] [3G] [e].

i {R.} 7
"jwﬂo Ar' {10571}
o {fp;} e
—jw,uo AY {3an}
- ! {T.} ]

The column matrices {2x,} and {28, represent the 2N pulse-
function coefficients of the electric and magnetic source cur-
rents on the dielectric interface. The third column matrix
— {te,'} and the following null matrix {0} (= {%,’}) are the
partial electric field due to the incident mode current j, on the
same interface but slightly to the incident and the transmission
sides, i.e., in spaces 1 and 3. Since the column matrices for the
field points at the interface are for points different, though
very slightly, from the source points, it is well understood that
the square matrix above is not diagonally symmetrical in its
arrangement of null submatrices.

The last threé field column matrices in (23) are null ma-
trices since we have assumed no incident wave field at the
transmission side, as observed in the integral equation of (21).

Now, the first three field column matrices {l¢,’} at the
left-hand side and all the submatrices [!+%,"*] at the right-
hand side can be calculated from the Appendix. Together with
[13G] and [V3F] calculated from (6a), (14a), (22), and (22a),
the matrix in (23) can be inverted to get all the unknown re-
flection, transmission, and evanescent-current coefficients
R,, T4, au, and B,.

Simplification in the inversion of (23) is possible on ac-
count of its partial symmetry and null matrices. In particular
in this paper, matrix simplifications following Preis [9] and
Pipes [10] are used. These are standard simplifications, but
the applications of them vary with the matrices formed by
different boundary conditions. Therefore, the details of the
simplifications are not included.

VI. NuMERICAL EXAMPLES

All the reflection and transmission coefficients derived
were those of the wall current J,. However, the usual defini-
tion of these coefficients are those of the electric field, i.e.,
E, in our case; therefore, for easy comparison of the numerical
examples with the available solutions, a conversion is needed.
By comparing the fields E, and H, (and hence J,) of the
TE, mode in a parallel-plate waveguide [8], the following

conversion is obtained.
a
={-)R. |f0r Ty
n .

a
for B, — \ T Tn|forJy‘
n

A TE,¢-mode incidence is assumed.

R,

for Ey

T, (24)
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Fig. 2. Parameters of the reflection coefficients, from the homogeneous

junction as a function of diaphragm height. TE(,-mode incidence is
assumed. (a) TEj1o magnitudes. (b) Phases for width d=0.7 A. (¢
Magnitudes only for the oversized width d=1.2 A,

Homogeneous Junction

The moment method is first applied to a waveguide with
a thin conducting diaphragm in Fig. 2. The incident mode is
assumed to be TEis of unit amplitude. Calculated from the
matrix formed by the linear equation (14) and converted by
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(24), the E, reflection coefficients are plotted as functions of
the diaphragm height % for waveguide widths of 0.7 A and 1.2\,

The solutions for d=0.7 A by Marcuvitz [8, pp. 224-227]
is included for comparison; good agreement between the two
sets of solutions is observed. In the case of d=1.2 )\, exact
solutions are available only for three values of #: for £=0 and
h=d, the solutions are trivial; and for k= d/2, exact solutions
are obtained following Collin’s procedure [11]. For these
three %/d ratios, the agreement of solutions is good. There-
fore, it is reasonable to assume that the moment-method
solutions for other %/d ratios are dependable.

Inhomogeneous Junctions

No solutions, exact or approximate, for the slanting di-
electric interface in Fig. 1(b), are available. To test the
method, therefore, the exact solution [12] and moment-
method solution, calculated from the matrix in (23) with the
conversion in (24) of a junction with perpendicular interface,
were computed and compared. No discrepancy between the
solutions was detected.

Having tested the method, we consider the junctions with
slant interface. The computed E, reflection and transmission
coefficients are plotted in Figs. 3 and 4 for waveguide widths
of 0.7 X\ and 1.2 A, and for slant ratios L/d of 2/7 and 1. As a
check for the accuracy of the solutions, we sum the total
scattered powers which should add to 100 percent of the
incident powers. The sums are included in Figs. 3 and 4. It is
observed that their errors are within 5 percent for frequencies
not too close to the cutoffs.

VII. DiscussioNn

In each application of the moment method stated above,
the scattered propagating currents are expanded in terms of
only a few modal basis functions. Hence, the convergence of
the method depends upon the extent of the evanescent cur-
rent region which decides the number of pulse basis functions
used. For electrically small junctions, the convergence is
rapid.

In view of the complexity of (18) and (19) of the in-
homogeneous junctions as compared to (9) of the homoge-
neous junctions, it is expected that the number of the pulse
basis functions needed for the former is much greater than
that for the latter. For the homogeneous and inhomogeneous
junctions in Figs. 2(a), (¢), 3(b), 4, and 3(c), these numbers
are 16, 20, 39, 49, and 57, respectively. The relative comput-
ing times are: 1, 1.5, 8, 12, and 17. As the junction becomes
larger and larger, more and more basis functions are required
to cover the widely extended evanescent current. This spoils
the convergence of the problem. Therefore, especially for the
inhomogeneous cases, the method is useful only for junctions
not too large electrically.

A technique for the numerical computation of the integral
of a propagating mode current in (12a) has been suggested by
Wu and Chow [6]. In the Appendix, a better approach
through a field transformation has been given. This approach

results in a numerical computation both with better accuracy

and reduced (to about half) computing time.

Only TE,o modes of the parallel-plate waveguide are
studied in this paper. One reason is that their fundamental
TE;, modes are identical to the important fundamental
modes in the familiar rectangular waveguide. The other rea-
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Fig. 3. The magnitudes of reflection coefficients and the sum of powers
of the propagating modes from the inhomogeneous junction, as a
function of the dielectric constant. TEjo-mode incidence with d=0.7 \
are assumed. (a) The only reflected mode with junction slant ratios
L/d=2/7 and 1. (b) The four transmitted modes with L/d= 2/7. (c)
The four transmitted modes with L/d=1.
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Fig. 4. Similar graph parameters as in Fig. 3, except that the waveguide
is oversized even in the incident side, i.e., d=1.2 . (a) Two reflected
modes with L/d=2/7. (b) Eight transmitted modes with L/d=2/7.

son is that to illustrate the use of the mixed basis functions,
it may be clearer to study modes with simple boundary con-
ditions; the TE boundary conditions used in (9), (18), and
(19) of the parallel-plate waveguide satisfied this condition.

At the end it is pointed out that Mautz and Harrington
[13] were the first investigators to use the mixed basis func-
tions consisting of modal functions for the azimuthal varia-
tion and pulse functions for the polar variation. This paper,
however, is the first to use the mixed basis functions, modal
and pulse, simultaneously along the same coordinate varia-
tion, i.e., along the same waveguide walls.

APPENDIX

A transformation needed to numerically evaluate the
semi-infinite line integral to get the electric field from the wall
current of a single propagating mode along a semi-infinite
parallel-plate waveguide in a homogeneous dielectric space
is derived as follows. Let the propagating mode be the in-
cident TE,o with a known wall current j,°. The unknown
electric field to be integrated from the modal current accord-
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Fig. 5. The transformed paths of integration for the semt-
infinite line integral in the Appendix.
ing to (12b) is
’
@) = —jomo [ )G |y ar. a)
AB4-CD

The paths of integration along AB and CD on the walls of
the semi-infinite waveguide are as shown in Fig. 5. For gen-
erality the edges A and C of the walls are drawn staggered.
The field point r can be anywhere. In Fig. 5, however, it is
drawn inside the waveguide.

Let a short-circuit wall be placed along the line EF per-
pendicular to the walls and passing through the field point 7.
The zero electric field resulting is actually the line integral
of the known incident and reflected modal current j,* and
Jn" on the short-circuit wall EF and on the waveguide walls
EB and FD. As shown in Fig. 5 walls EB=AB—AE, FD
= (CD~— CF. Therefore, the zero electric field at the short-
circuit wall can be written as

I3 ’ v/
ol L LS
AB+4CD AE+CF EF.

gt + jarlGr | 7)) dY. (A-2)

0:

Next let an open-circuit wall be placed along the same.line
EF. The electric field resulting is twice the kunown electric
field &,%(r) of the incident mode. Therefore, the electric field
at the open circuit can be written as

28,,,’(1’) Ir on EF

- !
[ -
AB4+CD

4

+ 9 2m,¢ X G'(r| ) dr'.
EF

] [n* = jwrlGr|7) @

AE+CF.
(A-3)

On comparing (A-2) to the above it is noted that the reflected
current j,” changes sign from short circuit to open circuit.
Also the last integral along EF is integrated not over the
electric current but over the magnetic current, since the
electric current is zero at the open circuit. The Green’s func-
tion G’ for the magnetic current is defined in (16a) in Sec-
tion V.

Along the opeu circuit EF, like the electric field, the mag-
netic current is twice the incident value, i.e., 2m,*. This is
because the magnetic current is related directly to the electric
field at the same point by the vector relation 2m,’=28§,° X 4,
where 7 is the unit normal of the wall EF. Conversely, then,
as pointed out by Harrington [1], the electric field resulting
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from the integration of the 2m,® in the last integral in (A-3)
must equal one-half of the electric field (28,7, i.e., having a
magnitude §,’. With this magnitude substituted, (A-3) is
reduced to

14 !
8ni(r) lt‘ on EF = —jwﬂo[f - :|
AB4CD AE4CF.
[t — jarlGGr | 7Y dr.  (A-4)

On summing (A-2) and (A-4), all integrals involving the re-
flected current j,” are cancelled except for that along the short-
circuit wall EF. Along this short-circuit wall 7,7 is identical
and replaceable by j,°. Hence, the rearranged result of the
summation can be written completely in terms of the in-
cident terms, which is

’
1

—jw#()f j"i(rl)G(rl rl) dr' =~ gnl(r) ron EF
AB+CD 2

+ jwuo[ fw - fAIMJ FiNGa| ) @ (A-5)

All terms at the right-hand side are known; these include the
electric field &,° of the incident mode and the partial electric
fields integrated from the known current 7,° of the same mode.
The paths of integration EF, AE, and CF are short, and
therefore can easily be numerically integrated.

The electric-field integral at the left-hand side is the un-
known €,(r) we need in (A-1). Thus the semi-infinite line
integral of (A-1) is transformed into short, numerically
evaluable, line integrals in (A-5).

The field point r in (A-5) can be anywhere, including that
beyond the waveguide edges A C in Fig. 5. In this case, the
walls AE and CF become extensions from the waveguide
edges, and the last integral in (A-5) should be added to in-
stead of subtracted from the right-hand side.

It is observed that the above derivation for the trans-
formation can be applied equally well for the reflected cur-
rent j,". The only difference is that instead of summing (A-4)

to (A-2), (A-4) is subtracted from (A-2). The resulting trans-
form equation (A-5) for 7, is identical to that for j,%, except
for the —(1/2)8,%(r) instead of a positive one at the right-
hand side.

Also it is observed that the transform equation (A-3) for
the reflected current j,* can be applied directly for the trans-
mitted current j,’. since they are both propagating away
from the edge 4 Cin Fig. 5.

The transform equations for 7,% 7,7, and j,* are applied to
calculate the partial electric fields e, e, and ¢,! in (12), (20),
and (21). It is noted that the partial electric fields in the
two latter equations are superscripted at the left-hand corner
to indicate the dielectric space, 1 or 3 in Fig. 1(c), in which
they are to be calculated.
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