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A Moment Method with Mixed Basis Functions for

Scattering by Waveguide Junctions

Y. LEONARD CHOW AND SIEN-CHONG WU

AWract-A moment method with mixed basis functions is intro-
duced. In this formulation, modal basis functions are used for the
expansion of the currents corresponding to the scattered propagating
modes, while pulse basis functions are used for the expnsion of the
current corresponding to the scattered envancescent waves. This,
together with the Dirac 8 weighting functions, reduces the number
of total basis functions needed while retaining the simplicity and
versatiMy of the method to cover junctions of an arbitrary shape.
This method is applied to study examples of homogeneous and
inhomogeneous waveguide junctions of parallel-plate waveguide
propagating TE waves. It is found that for junctions that are not
electrically large the convergence of the solutions is good.

An appendix is included to transform and quicken the numerical
integration of the modal basis functions.

I. INTRODUCTION

M
OMENT METHODS have been used to study scat-

tering problems for different types of scattering

boundaries with accurate results. However, the

basis functions used in each method have been limited to a

single type. For instance, the unit-pulse basis functions have

been used in the scattering by cylindrical obstacles in open

space [1], [2]; the modal basis functions have been used in

the scattering by two-dimensional (i.e., parallel-plate) wave-

guide diaphragms [3 ]– [5 ]. The former basis functions had to

be used due to the “not-so-regular” shape of the cylindrical

obstacle; the latter had to be used due to the infinite wave-
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guide walls. From the above examples, it becomes evident that

a mixed type of basis functions, consisting of both the unit

pulses and the modes, would well be used for a cylindrical ob-

stacle (along the third dimension) in a parallel-plate waveguide.

A first attempt in this direction for a single propagating

TE1o mode was carried out by Wu and Chow [6]. In the pres-

ent paper, the purpose is to extend and formulate TE modes

of the parallel-plate wave guide in general, using the mixed

basis functions, and along the same line as the standard for-

mulation given by Barrington [1]. After the terms in the

waveguide integral equation are identified with the basis func-

tions, the scattering by a cylindrical obstacle (in waveguides,

regular sized and oversized, with several propagating modes)

is studied. The method is then applied to the scattering by a

inhomogeneous waveguide junction with two different dielec-

trics. For convenience in both studies, the point-matched

weighting functions are used.

Only a small number of basis functions are needed for the

moment method using the mixed basis functions. The reason

is the following. One type of the basis functions is used to

represent the propagating modes along the infinite waveguide

walls; there are only a few of these propagating modes. The

other type (say, the narrow unit-pulse functions) is used to

represent the evanescent waves; the evanescent waves are

highly localized at the obstacle.

The numerical integration of the basis functions of the

propagating mode is simplified and quickened by a field trans-

formation. The derivation of the transformation is presented

in the Appendix.
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II. GENERAL FORMULATION WITH MIXED

BASIS FUNCTIONS

The methods of moment maybe used to solve the following

inhomogeneous equation

I(f) =g (1)

where L is a linear operator, g is a known function, and j is to

be determined. Instead of expanding j into a standard series

of a single type of basis functions, as given by Barrington [1],

we shall expand ~ into a series of the mixed type, say of two

types, of basis functions, j. and hn. That is,

(2)
n= 1 7),= 1

where a. and f?n are the coefficients. The above expansion is

allowed as long as f. and h. are linearly independent in the

domain of L These basis functions, similar to those in a stan-

dard series, need not be orthogonal nor complete [3]. Substi-

tuting (2) into (1) and using the linearity of Z, we have

3 awn)+: km’.) = g. (3)
n= 1 n=l

It is evident that the suitable inner product ~, g) need not

be changed by the mixed type of basis functions. Now the

weighting functions can be defined either as a mixed- or a

single-type series. For convenience in this paper, we may

define them as a single type Wm in the range of Z. Thus, taking

the inner product of (3) with each w~, we get

(Wm, g) = y an(wm, Zfn) + sl%{wm, D’&?) (4)
‘n=l n= 1

with rn=l, 2, 3, . . . , No+N1.

This set of equations can again be written in the standard

matrix form as given by Barrington [1]:

(5)

where {an ], {f?. ], and { g~ } are again, respectively, the un-

known and known column matrices. Each square matrix ele-

ment 1~,, is given by the inner product of either (wti, ~~.) or

{w~, Lhn). Since the basis-function types, j, and h., are mixed,

the matrix-element type is also mixed. In spite of this the

square matrix in (5) can obviously still be inverted by a stan-

dard method to get the unknown a. and /3..

III. THE INTEGRAL EQUATION FOR TE MODES

IN A PARALLEL-PLATE WAVEGUIDE

In a source-free two-dimensional space r(x, z), the transverse

electric field Ev is given by the line integrals of all the electric-

and the equivalent magnetic-current densities, J and M, along

the closed boundary of the space. That is [7],

where

G(rl Y’) =~H0(2)(<Z,kl r – r’1 ), k’ = u’~m (6a)
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Big. 1. (a) The homogeneous waveguide junction. (b) The inhomoge-
neous waveguide junction. (c) The inhomogeneous junction separated
into two homogeneous dielectric spaces, with the incident, scattered,
and evanescent components of the electric and magnetic currents, as
well as the field points, marked on their boundaries. Dotted lines indi-
cate field-point locations.

i.e., the Green’s function is the zeroth-order Hankel function

of the second kind. The space is assumed to be homogeneously

filled with a medium of dielectric constant E,. The two-

dimensional curl (V,X) in the second term operates on the field

point r, while the line integrals in both terms operate on the

source point r’. The electric- and magnetic-current densities

on the waveguide walls are related to the magnetic and elec-

tric fields there by the vector relations

.7=?2XH

M= EXI? (7)

where 4 is the unit vector normal to the line boundary. As we

have assumed E to lie on the y direction and H to lie on the

w–z plane, it is clear that J has only they component, and the

components of M lie on the x–z plane.

IV. HOMOGENEOUS JuNc’rloN

The identification of the moment-method matrix with the

integral equation given in (6) is rather involved since the

equation has two integral operators. For clarity, therefore, in

the first identification we shall eliminate the integral operator

involving the magnetic current M. This is done by considering

the homogeneous junctions with only conductive obstacles. In

this way, as shown in Fig. 1(a), the line integral for homo-

geneous space can be made to integrate along the boundaries

of the conducting obstacles and the infinite waveguide walls.

On these boundaries &?uand, therefore, M are zero.

With the second integral operator eliminated, (6) can be

arranged to have a form similar to (1) with the known and

unknown parameters on the opposite sides of the equal sign.

To do this, we shall first decompose the electric current Jg in

(6) into a sum of the incident modal currentj.i, the total scat-

tered propagating current J’ and the total scattered evanes-

cent current J@, i.e.,

1, = j.i +- J’ + J’. (8)

Without loss of generality, the incident modal current j.i is
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assumed to be that of a single TE.o model with unit amplitude.

The subscript y has been dropped in the right-hand side since

all currents are assumed to flow in the y direction. For con-

venience, all currents on the obstacle, propagating and eva-

nescent, are lumped together as an evanescent current. With

(8) substituted into (6), and with the Ev and M set to zero on

the conducting boundary, we get the rearranged form of (6) as

$=–jwpo ‘(JS + J@)G(r I r’)dv’. (9)

The above equation can be identified with (1) since jai, and

therefore its electric-field integral at the left-hand side, is a

completely known function; the unknown function at the

right-hand side is not the corresponding field integral but the

scattered current (J$ + Y) acted on by the integral operator

with the kernel G.

Now we expand the total scattered current into two basis

function types. First, the propagating current is written as a

basis function sum of the 2N0 propagating modes with unit

amplitude, i.e.,

J’= ~ [R.j.’(r’) -1- T..j%’(r’)] (lo)
n==1

where R. and T. are the reflection and transmission coeffi-

cients of the TEno propagating modes. It is noted that all the

reflected modal currents j~r, as well as the incident jai, are

semi-infinite in extent, that is they have value only on the

walls to the incident side of the waveguide junction. A similar

condition, but to the opposite side, is true for all the trans-

mitted modal current jn~. Next the localized evanescent cur-

rent is written as a basis-function sum of N1 unit pulses:

n= 1
(11)

where a. is the electric-current density at the evanescent

source point r’, and h. is a pulse function of unit amplitude

and a fixed width Ar’. Although the basis functions j.’, j.t, and

h. are not orthogonal to each other, they are obviously linearly

independent as required by the moment method.

With the width A# being small, (10) and (11) can be sub-

stituted into (9) to reduce the latter into the following sum:

– e.i(r) = ~ [Rxk’(r) + ~.ent(y) 1
n= 1

NI

–jOJpO ~ a.G(r I r.’) Ar’ (12)
.=1

where the semi-infinite line integral

s

I

enp(r) = — j-wo jnp(r’) G(r 1r’) dr’,

~ The second index of the mode is always zero, since there is no field
variation in the y direction for a parallel-plate waveguide defined on the
x-z plane as in Fig. 1(a).

is the partial electric field due to the known semi-infinite wall

current of the TEnO propagating mode. The numerical evalua-

tion of enp can be performed either through a transformation

given by Wu and Chow [6], or more conveniently through

another transformation given in the Appendix.

Having the same form as (3), (12) can now be solved by

forming the standard matrix of the moment method. The

weighting functions are chosen to be a series of Dirac &func-

tions, i.e.,

Wm = 6(r — r.), ~=l,z...
9 ? 2N0 + Nl (13)

where the field points r~ are matched such that N1 of them are

the evanescent source points of the basis functions while the

other 2N0 points, matching to the propagating modes, are

arbitrarily selected points on the waveguide walls beyond the

evanescent region. Taking the inner product of (12) with each

w~ in (13) we get the sum

—eai(rm) = ~ [R,tew’(rm) + Tnefit(rm)]
%=1

N1

–jkopo ~ anG(rm I m’) Art. (14)
n= 1

Equation (14) is identified with (4). Hence a standard matrix

of the type in (5) can be formed.

Before the matrix can be inverted it is noted that in the

second sum, the function G, as given in (6a), diverges when

the field point rm coincides with the source point m’. For these

points, we have to replace G by a more suitable approxima-

tion:

[( kAr’
G(r.l r.’) = ~ l--j? ln—

)1
1 +7–1 ,

T

rm = r.’ (14a)

where y = 0.577215, as given by Barrington [1].

With the matrix inverted, the unknown coefficients R., T.,

and an of the currents are obtained.

V. INHOMOGENEOUS JUNCTION

For an inhornogeneously filled waveguide junction, as

shown in Fig. 1 (b), the homogeneous space equation (6) can-

not be applied directly. It is necessary, hence, to consider the

junction as two separated but homogeneous and closed dielec-

tric spaces. These two spaces have a dielectric interface; there-

fore, the magnetic-current term in (6) has to be included to

account for the contribution from the equivalent magnetic

current (M= E x fl) across the interface.

The magnetic-current term in (6) is not in a form suitable

for numerical analysis. To improve this we shall first move the

field-point differential operator A, X through the source-point

integral operator into the integrand. Then the integrand is

transformed into two terms, which are

V,X [iW(r’)G(r ] r’)] = G(r I r’)VtXM(r’)

. RI(r’) X VtG(r \ r’) (15)

from a standard vector relation. The first term in the above

vanishes since the field-point operator At X does not operate on

the source points in AI; and the second term above, involving

the gradient V~, can be easily differentiated since its operand,

the Green’s function, is simply a zeroth-order Hankel func-

tion. With the integrand of the second term in (6) thus re-
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duced, it can be substituted back into (6) to get the more

convenient form:

$

f

Eu(r) = –jwpo JgG(r I r’) dr’

$

I

+9” Me XG’(r\r’)dr’ (16)

where the vector

G’(rl r’) =VtG(rl r’)

–+k (r–r’)—_—
j4 Ir-r’l

H,[2J({~k I r – r’ I ) (16a)

with c, being the dielectric constant of a separated space of the

inhomogeneous junction.

The boundary condition requires that the tangential

E- and H-fields are continuous across the interface between

the two separated spaces. Nevertheless, their equivalent elec-

tric and magnetic currents as given in (7) have opposite signs

in the two separated spaces since the unit vector k changes

sign across the interface.

With these in mind, we may now decompose the currents

J and ill of (6) into the following superscripted current-

density components. Along the waveguide walls at the inci-

dent side of the dielectric interface:

ll-.i modal current of incident TE.O mode of unit

amplitude;

lJs current of all scattered propagating modes;

lJe current of all evanescent modes. (17)

Along the waveguide walls at the transmission side there is no

incident current, while there are both the scattered propagat-

ing and evanescent currents 3JS and 3Je. In between these two

spaces, along the interface itself, and with the upper sign

referring to the incident side, we define

-& 2p totai scattered electric current;

+ ‘M’ total scattered magnetic current.— (17a)

For easy identification in the following integrals and matrix,

the superscripted currents and the corresponding sections are

drawn in Fig. 1(c). Outside their defined sections, the currents

are assumed to be zero.

With the relevant currents substituted and in the space at

the incident side, (6) can be written in a form similar to (9),

but with line integrals only along the boundaries with the

specific currents,

~@Pof,’1~.’lG(rlr’)d~’

[sI*–jo)po
1

(,>+ ~) +f2’2Jj@#)d/

+5” f’2WX ‘G’(rlr’)dr’ – ‘~(r) (18)
g

where, similar to the subscripted integrals, the Green’s func-

tions are superscripted to indicate the dielectric space they

belong to. I t is noted that the Ev-field along the interface is

replaced by its equivalent magnetic current Silf’. Similarly,

in the space at the transmission side, (6), with the incident

current equal to zero is

St() = – Z&(r-) –j. 2Me X 3G’ (r \ r’) dr’

+j@#o[f’’2Je-~’(3Je+ 3J8)]3G(r/r)dr. (19)

Similar to the expansion in (10) and (11), we can now

expand the currents 1J8, lJe, 2J=, 2Me, 8Je, and 3J8 into two

types of basis functions, of propagating modes, and of unit

pulses. Therefore, equivalent to (12), (18) and (19) can be

written into the two following sums: with the field and source

points defined as rm and rnt, at the incident side the sum isz

– ‘ea’(rm) = ~ Rn’en’(rn) – jq.Lo ~ lanlG(rm i m’) At-’
n= 1 n-l

– j@.Lo & 2a~1G(Y~ / r.’) Ar’
n=l

– ~ 2@.l~(rm \ r~) Ar’

at the transmission side the sum is

(20)

O = jwo ~ 2a.3G(r~ \ r.’)Ar’ – ~ 2/3.3F(rm I r.’) Ar’
n=l ?t=l

– jquo ~ 3an3G(rm i TW’)At” + ~ Tm3efi’(rm) (21)
n=l n= 1

where 2~n is the rnagfietic-current density at the evanescent

source point rm’ on the interface. The Green’s function for

magnetic current is

1’3F(r~ I rfi’) ~

)
‘f”(H X “3G’(r~ I r~’), rm # r.r (22)

= l/2Ar’, r., = m’. (22a)

For rm = rm’, the first F term in (22) diverges and, as shown by

Harrington [1], the second F term in (22a) has to be used. It

is noted that the ‘Me(r) terms in (18) and (19) have been ab-

sorbed in the second F term.

The field-point testing functions w~ are again a sequence

of Dirac &functions coinciding with the centers of the unit

pulses of the evanescent waves. At each unit pulse along the

interface there are actually two source-current quantities, one

electric and one magnetic. Therefore, corresponding to each

source point, two field-point testing functions are needed, one

slightly to the right in space 1 and the other slightly to the

left in space 3. With all the evanescent field points and source

points matched, a few arbitrary field points, on the waveguide

walls at each side of the interface beyond the evanescent re-

gion, are needed to match the scattered propagating modes.

In this way, the number of equations arrived at from the field

point equals the number of unknown mode and pulse basis

functions, and the matrix for the moment method is formed.

Thus, following (20) and (21), the matrix has a size of N X N

where N= NO+ Nl+ 2N’+ N?+ Ni. For clarity, the matrix

is partitioned in the following submatrices:

%The partial electric fields 1,%# here are the same semi-infinite line
integrals of the modal current as those in (12a). Nevertheless, an extra
superscript is added at the upper left-hand corner to indicate the dielec-
tric space, 1 or 3 in Fig, 1(c), in which they have nonzero values. The cor-
responding modal current, snch as ~={ in (17) had the same superscripts.
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—.

{Rn

[le~T] [lG] [’G] [IF]
[le~r] [lG] [’G] [lF]
[le~r] [’G] [’G] [IF]
[o] [o] [’G] [’F]
[o] [o] [’G] [’F]

[o] [o] [’G] [’F]

[0] [0]

[0] [0]

[0] [0]

[’G] [’en’

[’G] [’em’

[’G] [’e~’

. (23)

The column matrices { ‘am] and {2&} represent the 2NZ pulse-

function coefficients of the electric and magnetic source cur-

rents on the dielectric interface. The third column matrix

– { ‘e.’} and the following null matrix {O} ( = { ‘es’ } ) are the

partial electric field due to the incident mode current jai on the

same interjace but slightly to the incident and the transmission

sides, i.e., in spaces 1 and 3. Since the column matrices for the

field points at the interface are for points different, though

very slightly, from the source points, it is well understood that

the square matrix above is not diagonally symmetrical in its

arrangement of null submatrices.

The last three field column matrices in (23) are null ma-

trices since we have assumed no incident wave field at the

transmission side, as observed in the integral equation of (21).

Now, the first three field column matrices { leai ) at the

left-hand side and all the sub matrices [l!3en” ~] at the right-

hand side can be calculated from the Appendix. Together with

[“G] and [“F] calculated from (6a), (14a), (22), and (22a),

the matrix in (23) can be inverted to get all the unknown re-

flection, transmission, and evanescent-current coefficients

R., T., an, and ~n.

Simplification in the inversion of (23) is possible on ac-

count of its partial symmetry and null matrices. In particular

in this paper, matrix simplifications following Preis [9] and

Pipes [10] are used. These are standard simplifications, but

the applications of them vary with the matrices formed by

different boundary conditions. Therefore, the details of the

simplifications are not included.

VI. NUMERICAL EXAMPLES

All the reflection and transmission coefficients derived

were those of the wall current Ju. However, the usual defini-

tion of these coefficients are those of the electric field, i.e.,

Eu in our case; therefore, for easy comparison of the numerical

examples with the available solutions, a conversion is needed.

By comparing the fields Ey and ~. (and hence J~) of the

TEniz mode in a parallel-plate waveguide [8], the following

conversion is obtained. .,

()aTn\for~u = – Tn \ for J..
n

A TEaO-mode incidence is assumed.

(24)
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Fig. 2. Parameters of the reflection coefficients, from the homogeneous
junction as a function of diaphragm height. TEm-mode incidence is
assumed. (a) TE1o magnitudes. (b) Phases for width d = 0.7 X. (c)
Magnitudes only for the overaizecl width d = 1.2 X.

Homogeneous Junction

The moment method is first applied to a waveguide with

a thin conducting diaphragm in Fig. 2. The incident mode is
assumed to be TE1d of unit amplitude. Calculated from the

matrix formed bv the linear eauation (14) and converted by.,
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(24), the EUreflection coefficients areplotted as functions of

the diaphragm height k for waveguide widths of 0,7 k and 1.2 L

The solutions for d= 0.7 h by Marcuvitz [8, pp. 224-227]

is included for comparison; good agreement between the two

sets of solutions is observed. In the case of d=l.2A, exact

solutions are available only for three values of h: for k = O and

h=d, thesolutions aretrivial ;andfor h=d/2, exact solutions

are obtained following Collin’s procedure [II]. For these

three h/d ratios, the agreement of solutions is good. There-

fore, it is reasonable to assume that the moment-method

solutions for other lz/d ratios are dependable.

Inhomogeneous Junctions

No solutions, exact or approximate, for the slanting di-

electric interface in Fig. 1(b), are available. To test the

method, therefore, the exact solution [12 ] and moment-

method solution, calculated from the matrix in (23) with the

conversion in (24) of a junction with perpendicular interface,

were computed and compared. No discrepancy between the

solutions was detected.

Having tested the method, we consider the j unctions with

slant interface. The computed Eu reflection and transmission

coefficients are plotted in Figs. 3 and 4 for waveguide widths

of 0.7 i and 11.2A, and for slant ratios L/d of 2/7 and 1. As a

check for the accuracy of the solutions, we sum the total

scattered powers which should add to 100 percent of the

incident powers. The sums are included in Figs. 3 and 4. It is

observed that their errors are within 5 percent for frequencies

not too close to the cutoffs.

VII. DISCUSSION

In each application of the moment method stated above,

the scattered propagating currents are expanded in terms of

only a few modal basis functions. Hence, the convergence of

the method depends upon the extent of the evanescent cur-

rent region which decides the number of pulse basis functions

used. For electrically small junctions, the convergence is

rapid.

In view of the complexity of (18) and (19) of the in-

homogeneous junctions as compared to (9) of the homoge-

neous junctions, it is expected that the number of the pulse

basis functions needed for the former is much greater than

that for the latter. For the homogeneous and inhomogeneous

junctions in Figs. 2(a), (c), 3(b), 4, and 3(c), these numbers

are 16, 20, 39, 49, and 57, respectively. The relative comput-

ing times are: 1, 1.5, 8, 12, and 17. As the junction becomes

larger and larger, more and more basis functions are required

to cover the widely extended evanescent current. This spoils

the convergence of the problem. Therefore, especially for the

inhomogeneous cases, the method is useful only for j unctions

not too large electrically.

A technique for the numerical computation of the integral

of a propagating mode current in (12a) has been suggested by

Wu and Chow [6]. In the Appendix, a better approach

through a field transformation has been given. This approach

results in a numerical computation both with better accuracy

and reduced (to about half) computing time.

Only TE.o modes of the parallel-plate waveguide are

studied in this paper. One reason is that their fundamental

TEIo modes are identical to the important fundamental

modes in the familiar rectangular waveguide. The other rea-
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Fig. .3. The magnitudes of reflection coefficients and the sum of powers
of the propagating modes from the inhomogeneous junction, aS a

function of the dielectric constant. TEIO-mode incidence with d = 0.7 X
are assumed. (a) The only reflected mode with junction slant ratios
L/d = 2/7 and 1. (b) The four transmitted modes with L/d= 2/7. (c)
The four transmitted modes with L/d =1.
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modes with L/d = 2/7. (b) Eight transmitted modes with L/d= 2/ 7.

son is that to illustrate the use of the mixed basis functions,

it may be clearer to study modes with simple boundary con-

ditions; the TE boundary conditions used in (9), (18), and

(19) of the parallel-plate waveguide satisfied this condition.

At the end it is pointed out that Mautz and Barrington

[13] were the first investigators to use the mixed basis func-

tions consisting of modal functions for the azimuthal varia-

tion and pulse functions for the polar variation. This paper,

however, is the first to use the mixed basis functions, modal

and pulse, simultaneously along the same coordinate varia-

tion, i.e., along the same waveguide walls.

APPENDIX

A transformation needed to numerically evaluate the

semi-infinite line integral to get the electric field from the wall

current of a single gvopagating mode along a semi-infinite

parallel-plate waveguide in a homogeneous dielectric space

is derived as follows. Let the propagating mode be the in-

cident TEnO with a known wall current jn;. The zdxzow?z

electric field to be integrated from the modal current accord-

X

------k; ----D“0 “m)y *r

/“! ! E-&TEnO

/’---, .-. .
Ao E B(toz=m)

Fig. 5. The transformed paths of integration for the semh
infinite line integral in the Appendix.

ing to (12b) is

sfeni(r) = — japo jni(r’)G(r
AB+CD

The paths of integration along A B and Cl

r’) drf. (A-1)

on the walls of

the semi-infinite waveguide are as shown in Fig. 5. For gen-

erality the edges .4 and C of the walls are drawn staggered.

The field point r can be anywhere. In Fig. 5, however, it is

drawn inside the waveguide.

Let a short-circuit wall be placed along the line EF per-

pendicular to the walls and passing through the field point r.
The zero electric fielcl resulting is actually the line integral

of the known incident and reflected modal current jni and

j%’ on the short-circuit wall EF and on the waveguide walls

EB and FD. As shown in Fig. 5 walk EB =AB –AE, FD

= CD – CF. Therefore, the zero electric field at the short-

circuit wall can be written as

0= -’”’OIJ;B+CD-J;E+CF+ J;J

‘ [j~i + j~r]G(r I r’) dr’. (A-2)

Next let an open-circuit wall be placed along the sameline

EF. The electric field resulting is twice the brown electric

field 8ni(r) of the incident mode. Therefore, the electric field

at the open circuit can be written as

2&n’(r) ], .n ~~

= “@pO[f:B+CD-f:E+,~[ ’n’-~n’’G(rl)drdr’

+ 9. f’ 2mni X G’(r\ r’) dr’. (A-3)
EF

On comparing (A-2) to the above it is noted that the reflected

current j.’ changes si,gn from short circuit to open circuit.

Also the last integral along EF is integrated not over the

electric current but over the magnetic current, since the

electric current is zero at the open circuit. The Green’s func-

tion G’ for the magnetic current is defined in (16a) in Sec-

tion V.

Along the open circuit EF, like the electric field, the mag-

netic current is twice the incident value, i.e., 2m~i. This is

because the magnetic current is related directly to the electric

field at the same point by the vector relation 2m~i = 2&; X fi,

where z is the unit normal of the wall EF. Conversely, then,

as pointed out by Barrington [1], the electric field resulting
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from the integration of the

must equal one-half of the

magnitude &,~i. With this

reduced to

2mn; in the last integral in (A-3)

electric field (2&ni), i.e., having a

magnitude substituted, (A-3) is
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&.i(r) 1,0.EI? =
-’”””[J:B+CD-J:E+CJ

“[j~i–j~’]G(r ]r’)dr’. (A-4)

On summing (A-2) and (A-4), all integrals involving the re-

flected currentjn’ are cancelled except for that along the short-

circuit wall EF. Along this short-circuit walljn’ is identical

and replaceable byjn;. Hence, the rearranged result of the

summation can be written completely in terms of the in-

cident terms, which is

sI–japo j~i(r’)G(r ] r’) dr’ = ~ 8ni(r) I= .n E*
AB+CD

‘j”~”u:p -J:E+cFl~fi’(r’’G(rlr’)d” ‘A-’)

All terms at the right-hand side are known; these include the

electric field ~ni of the incident mode and the partial electric

fields integrated from the known currentjni of the same mode.

The paths of integration EF, A E, and CF are short, and

therefore can easily be numerically integrated.

The electric-field integral at the left-hand side is the un-

known e.i(r) we need in (A-1). Thus the semi-infinite line

integral of (A-1) is transformed into short, numerically

evaluable, line integrals in (A-5).

The field point r in (A-5) can be anywhere, including that

beyond the waveguide edges A C in Fig. 5. In this case, the

walls AE and CF become extensions from the waveguide

edges, and the last integral in (A-5) should be added to in-

stead of subtracted from the right-hand side.

It is observed that the above derivation for the trans-

formation can be applied equally well for the reflected cur-

rentjnr. The only difference is that instead of summing (A-4)

to (A-2), (A-4) is subtracted from (A-2). The resulting trans-

form equation (A-5) for j.’ is identical to that for jni, except

for the – (1/2) 8ni(r) instead of a positive one at the right-

hand side.

Also it is observed that the transform equation (A-5) for

the reflected current j.’ can be applied directly for the trans-

mitted current jnt, since they are both propagating away

from the edge A Cin Fig. 5.

The transform equations for ~.~, j.’, and jrt are applied to

calculate the partial electric fields e.i, en’, and enf in (12), (2o),

and (21). It is noted that the partial electric fields in the

two latter equations are superscripted at the left-hand corner

to indicate the dielectric space, 1 or 3 in Fig. 1 (c), in which

they are to be calculated.
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